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Abstract. We study the transport properties of an atomic-scale contact in the ballistic regime.
The results for the conductance and related transmission eigenvalues show how the properties of
the ideal semi-infinite leads (i.e. measuring device) as well as the coupling between the leads and
the conductor influence the transport in a two-probe geometry. We observe the evolution from
conductance quantization to resonant tunnelling conductance peaks upon changing the hopping
parameters in the disorder-free tight-binding Hamiltonian which characterize the leads and the
coupling to the sample.

Mesoscopic physics [1] has changed our understanding of transport in condensed matter
systems. The unearthing of new effects, such as weak localization [2] or universal conductance
fluctuations [3], has been accompanied by rethinking of the established transport ideas in a
new light. One of the most spectacular discoveries of mesoscopics is conductance quantization
(CQ) [4, 5] in a short and narrow constriction connecting two high-mobility (ballistic) two-
dimensional electron gases. The conductance of these quantum point contacts as a function of
the constriction width W ∼ λF has steps of magnitude 2e2/h. New experimental techniques
have made possible the observation of similar phenomena [6] in metallic point contacts of
atomic size. The Landauer formula [7] for the two-probe conductance

G = 2e2

h
Tr(tt†) = GQ

N∑
n=1

Tn (1)

has provided an explanation of the stepwise conductance in terms of the number N of transverse
propagating states (‘channels’) at the Fermi energy EF which are populated in the constriction.
Here t is the transmission matrix, Tn transmission eigenvalues and GQ = 2e2/h is the
conductance quantum. In the ballistic case (tt†)ij is δij , or equivalently Tn is 1. Further studies
have explored CQ under a range of conditions [8]. They include various geometries [9, 10],
scattering on impurities [11], temperature effects, and magnetic field.

In this paper we study the influence of the attached leads on ballistic transport (� > L,
� being elastic mean free path, L being the system size) in a nanocrystal. We assume that in the
two-probe measuring geometry an electron leaving the sample does not re-enter the sample in
a phase-coherent way. This means that at zero temperature the phase coherence length Lφ is
equal to the length of the sample L. In the jargon of quantum measurement theory, the leads
act as a ‘macroscopic measurement apparatus’. Our concern with the influence of the leads on
conductance is therefore also a concern of quantum measurement theory. Recently, the effects
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of a lead–sample contact on quantum transport in molecular devices have received increased
attention in the developing field of ‘nanoelectronics’ [12]. Also, the simplest lattice model and
related real-space Green function technique are chosen here in order to address some practical
issues which appear in the frequent use of these methods [1] to study transport in disordered
samples. We emphasize that the relevant formulae for transport coefficients contain three
different energy scales (introduced by the leads, the sample, and the lead–sample contact), as
discussed below.

In order to isolate just these effects we pick the strip geometry in the two-probe measuring
set-up shown in figure 1.
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Figure 1. A two-dimensional version of our actual 3D model of a two-probe measuring geometry.
Each site hosts a single s orbital which hops to six (or fewer for surface atoms) nearest neighbours.
The hopping matrix element is t (within the sample), tL (within the leads), and tC (coupling of the
sample to the leads). The leads are semi-infinite and connected at ±∞ to reservoirs biased by the
potential difference µL − µR = eV .

The three-dimensional (3D) nanocrystal (‘sample’) is placed between two ideal (disorder-
free) semi-infinite ‘leads’ which are connected to macroscopic reservoirs. The electrochemical
potential difference eV = µL − µR is measured between the reservoirs. The leads have the
same cross section as the sample. This eliminates scattering induced by the wide-to-narrow
geometry [10] of the sample–lead interface. The whole system is described by a clean tight-
binding Hamiltonian (TBH) with nearest-neighbour hopping parameters tmn:

Ĥ =
∑

〈m,n〉
tmn|m〉〈n| (2)

where |m〉 is the orbital ψ(r − m) on the site m. The ‘sample’ is the central section with
Nx × Ny × Nz sites, and for simplicity and clarity of the subsequent results a small lattice
for this section is chosen. The ‘sample’ is perfectly ordered with tmn = t . The leads are
the same except that tmn = tL. Finally, the parameter describing the hopping (coupling)
between the sample and the lead is tmn = tC. We use hard-wall boundary conditions in
the ŷ- and ẑ-directions. The different hopping parameters introduced here are necessary
when studying disordered samples in the same geometry—to get the conductance at the Fermi
energies throughout the whole band extended (compared to the clean case) by disorder one
has to use [13] tL > t . Thus, one should be aware of the conductances we calculate in the rest
of the paper when engaging in such studies.

Our toy model shows exact conductance steps in multiples of GQ when tC = tL = t .
This is a consequence of infinitely smooth (‘ideally adiabatic’ [9]) sample–lead geometry.
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Then we study the evolution of quantized conductance into resonant tunnelling conductance
while changing the parameter tL of the leads as well as the coupling between the leads and the
conductor tC. An example of this evolution is given in figure 2. The equivalent evolution of
the transmission eigenvalues Tn of channels is shown in figure 3. A similar evolution has been
studied recently in one-atom point contacts [14].
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Figure 2. The conductance G of a ballistic conductor modelled on a simple cubic lattice, 3×3×3,
for the following values of the lead and coupling parameters: (a) tC = 1, tL = 1; (b) tC = 1.5,
tL = 1; (c) tC = 3, tL = 1; and (d) tC = 0.1, tC = 1. In the case (d), the conductance peaks are
connected by smooth curves of G < 0.004e2/h.

The non-zero resistance is a purely geometrical effect [15] caused by reflection when
the large number of channels in the macroscopic reservoirs matches the small number of
channels in the lead, and is known (in a non-quantized form) from the studies of classical point
contacts [16, 17]. The sequence of steps (1, 3, 6, 5, 7, 5, 6, 3, 1 multiples of GQ as the Fermi
energy EF is varied) is explained as follows. The eigenstates in the leads, which comprise
the scattering basis, have the form ψk ∝ sin(kymy) sin(kzmz)eikxmx at atom m, with energy
E = 2tL[cos(kxa) + cos(kya) + cos(kza)], where a is the lattice constant. The discrete values
ky(i) = iπ/(Ny + 1)a and kz(j) = jπ/(Nz + 1)a define subbands or ‘channels’ labelled by
(ky, kz) ≡ (i, j), where i runs from 1 to Ny and j runs from 1 to Nz. The channel (ky, kz)

is open if EF lies between the bottom of the subband, 2tL[−1 + cos(kya) + cos(kza)], and
the top of the subband, 2tL[1 + cos(kya) + cos(kza)]. Because of the degeneracy of different
transverse modes in 3D, several channels (ky, kz) open or close at the same energy. Each
channel contributes one conductance quantum GQ. This is shown in figure 2 for a sample with
3×3 cross section where the number of transverse propagating modes at EF (‘open channels’) is
N < 9. In the adiabatic geometry channels do not mix, i.e. the transmission matrix is diagonal
in the basis of channels defined by the leads. Nevertheless, adiabaticity does not ensure CQ
with backscattering present [18], as demonstrated when the hopping parameters (t , tL, and tC)
differ from each other.

We compute the conductance using the expression obtained in the framework of
the Keldysh technique [19]. This provides the following Landauer-type formula for the
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Figure 3. Transmission eigenvalues of a ballistic conductor modelled on a simple cubic lattice,
3×3×3. The parameters tL and tC are the same as in figure 2. All channels (i, j) ≡ (ky(i), kz(j))

whose subbands are identical have the same Tn. This gives the degeneracy of Tn: three (upper
panel), two (middle panel), and one (bottom panel). In the middle panel the lower two subbands
have an energy interval of overlap with the upper two subbands.

conductance of a non-interacting system:

G = 2e2

h
Tr(&̂LĜr

1Nx
&̂RĜa

Nx 1) = 2e2

h
Tr(tt†) (3)

t =
√

&̂LĜr
1Nx

√
&̂R. (4)

Here Ĝr
1Nx

, Ĝa
Nx 1 are matrices whose elements are the Green functions connecting the layers

1 and Nx of the sample. Therefore, only the Ny × Nz block of the complete matrix
Ĝ(n, m) is needed to compute the conductance. The expression (3) is formally equivalent
to that (1) of the Landauer–Büttiker scattering formalism [1]. It provides the exact zero-
temperature conductance and allows us to treat any lead–sample coupling [19]. Such
Landauer-type expressions, based on single-particle Green functions, are commonly used in
the literature [1, 20, 21] because of the computational efficiency of (often real-space) Green
function techniques (in particular, these techniques have the advantage of being useful even
in the situations where it becomes hard to define the asymptotic conducting channels [22]).
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We employ this (somewhat too sophisticated for our simple problem) computational scheme
in order to take into account different energy scales present in the lattice Hamiltonians,
like (2), which are usually not treated explicitly in application of such methods to more
complicated systems.

The positive operator &̂L = i((̂r
L − (̂a

L) = −2 Im (̂L > 0 in (3) is the counterpart of
the spectral function Â = i(Ĝr − Ĝa) for the ‘self-energy’ (̂L introduced by the left lead.
It ‘measures’ the coupling of the open sample to the left lead (&̂R is equivalent for the right
lead). The Green operator is defined as the inverse of (E −Ĥ ) including the relevant boundary
conditions. Instead of inverting the infinite matrix we invert only (E − ĤS) defined on the
Hilbert space spanned by orbitals |m〉 inside the sample [19]:

Ĝr = (E − ĤS − (̂r )−1 (5)

where ĤS is the TBH for the sample only. This is achieved by using the retarded self-energy
(̂r = (̂r

L + (̂r
R introduced by the left (L) and the right (R) lead. In site representation, the

Green operator Ĝr,a is a Green function matrix Ĝr,a(n, m) = 〈n|Ĝr,a|m〉. Equation (5) does
not need the small imaginary part i0+ necessary to specify the retarded or advanced Green
operator Ĝr,a because the lead self-energy ((̂a = [(̂r ]†) adds a well defined imaginary part
to E − ĤS . This imaginary part is related to the average time that an electron spends inside the
sample before escaping into the leads. The self-energy terms have non-zero matrix elements
only on the edge layers of the sample adjacent to the leads. They are given [20] in terms of
the Green function on the lead edge layer and the coupling parameter tC:

(̂r
L,R(n, m) = 2

Ny + 1

2

Nz + 1

∑
ky ,kz

sin(kynya) sin(kznza)(̂r (ky, kz) sin(kymya) sin(kzmza)

(6)

where (n, m) is the pair of sites on the surfaces inside the sample which is adjacent to the
leads L or R. The self-energy (̂r (ky, kz) of the channel (kz, ky) is given by

(̂r (ky, kz) = t2
C

2t2
L

(
E( − i

√
4t2

L − E2
(

)
(7)

for |E(| < 2tL. We use the shorthand notation E( = E − ε(ky, kz), where ε(ky, kz) =
2tL[cos(kya) + cos(kza)] is the energy of quantized transverse levels in the lead. In the opp-
osite case, |E(| > 2tL, we have

(̂r (ky, kz) = t2
C

2t2
L

(
E( − sgn E(

√
E2

( − 4t2
L

)
. (8)

In order to study the conductance as a function of two parameters tL and tC, we change
either one of them while holding the other fixed (at the unit of energy specified by t), or both at
the same time. The first case is shown in figure 2 and figure 4 (upper panel), while the second
one is shown in figure 4 (lower panel). The conductance is depressed in all cases since these
configurations of hopping parameters tmn effectively act as a barriers. There is a reflection at
the sample–lead interface due to the mismatch of the subbands in the lead and in the sample
when tL differs from t . In general, each set of channels which have the same energy subband
is characterized by its own transmission function Tn(EF ). When the coupling tC = 0.1 is
small a double-barrier structure is obtained which has a resonant tunnelling conductance.
The electron tunnels from one lead to the other via discrete eigenstates. The transmission
function is composed of peaks centred at Er = 2t[cos(kxa) + cos(kya) + cos(kza)], where
kx = kπ/(Nx + 1)a is now quantized inside the sample, i.e. k runs from 1 to Nx . The
magnitude and width of the peaks are defined by the rate at which an electron placed between
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Figure 4. Conductance G of a ballistic conductor modelled on a simple cubic lattice, 3 × 3 × 3,
for the following values of the lead and coupling parameters: upper panel—(a) tC = 1, tL = 1;
(b) tC = 1, tL = 1.5; and (c) tC = 1, tL = 3; lower panel—(a) tC = 1, tL = 1; (b) tC = 1.5,
tL = 1.5; and (c) tC = 3, tL = 3.

barriers leaks out into the lead. These rates are related to the level widths generated through
the coupling to the leads. In our model they are energy (i.e. mode) dependent. For example
around EF = 0 seven transmission eigenvalues are non-zero (in accordance with the number
of open channels in figure 3) and exactly at EF = 0 three of them have Tn = 1 and four
Tn = 0.5. Upon decreasing tC further, all conductance peaks, except the one at EF = 0,
become negligible. Singular behaviour of G(EF ) at subband edges of the leads was observed
before [11].

It is worth mentioning that the same results are obtained using a non-standard version of
the Kubo–Greenwood formula [23] for the volume-averaged conductance:

G = 4e2

h

1

L2
x

Tr(h̄v̂x Im Ĝ h̄v̂x Im Ĝ) (9a)

Im Ĝ = 1

2i
(Ĝr − Ĝa) (9b)

where vx is the x-component of the velocity operator. The formula was originally derived
for an infinite system without any notion of leads and reservoirs. The crucial non-standard
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aspect is the use of the Green function (5) in the formula (9). This takes into account, through
lead self-energy (6), the boundary conditions at the reservoirs. The reservoirs are necessary
in both Landauer and Kubo formulations of linear transport for open finite systems. They
provide thermalization and therefore a steady state of the transport in the central region. Using
semi-infinite leads [24] is a convenient method for taking into account electrons entering or
leaving the phase-coherent sample, thereby allowing us to bypass explicit modelling of the
thermodynamics of macroscopic reservoirs. The equivalence between this ‘non-standard’
Kubo formula for the finite-size system and the Landauer formula (which takes into account
the finite size of the sample from the outset) is a well established fact [25]. Here we just want
to emphasize that when employing the Kubo formula (9) one can (and should) use current
conservation and compute the trace only on two adjacent layers inside the sample. Inasmuch
as the velocity operator ih̄v̂x = [x̂, Ĥ ] for the nearest-neighbour TBH (2) connecting the
states residing on two adjacent layers is non-zero, the computation of the Green function
elements Ĝr,a(n, m), connecting states on those two layers, represents the minimum of the
computational complexity in this method [20] (together with subsequent trace over those
two layers). This is obviously a bit more ‘complex’ (and time consuming) than the use of
the equivalent Landauer-type formula (3). To get the correct results in this scheme, Lx in
equation (9) should be replaced by a lattice constant a. It is interesting that if one traces in the
‘pedestrian way’ over the whole conductor (as ‘suggested’ by (9) at first sight), the denominator
should contain the number of pairs of adjacent layers (N − 1)a instead of Lx = Na.

In the quantum transport theory of disordered systems the influence of the leads on the
conductance of a sample is understood as follows [26]. An isolated sample has a discrete
energy spectrum. Attaching leads necessary for transport measurements will broaden energy
levels. If the level width & due to the coupling to leads is larger than the Thouless energy
ETh = h̄/τD  h̄D/L2 (D = vF �/3 being the diffusion constant), the level discreteness is
unimportant for transport. For our case of ballistic conduction, ETh is replaced by the inverse
time of flight h̄vF /L. In the disordered sample where & � ETh, varying the strength of the
coupling to the leads will not change the transport coefficients. In other words, the intrinsic
resistance of the sample is much larger than the resistance of the lead–sample contact [27]. In
the opposite case, discreteness of levels becomes important and the strength of the coupling
defines the conductance. This is the realm of quantum dots [28] where weak enough coupling
can make the charging energy e2/2C of a single electron important as well. Changing the
properties of the dot–lead contact affects the conductance, i.e. the result of measurement
depends on the measuring process. The decay width & = h̄/τdwell of the electron emission
into one of the leads is determined by transmission probabilities of channels through the contact
and mean level spacing [26]. This means that mean dwell time τdwell inside our sample depends
on both tC and tL. Changing the hopping parameters will make τdwell greater than the time of
flight τf = L/vF . Thus, ballistic conductance sensitively depends on the parameters of the
dephasing environment (i.e., the leads).

In conclusion, we have studied the transport properties of a ballistic nanocrystal placed
between two semi-infinite leads in the simplest strip geometry. We observe extreme sensitivity
of the conductance to changes in the hopping parameter in the leads as well as the coupling
between the leads and the sample. As can be easily anticipated, the conductance evolves
from perfect quantization to resonant tunnelling. Nevertheless, it is quite amusing that vastly
different G(EF ) are obtained between these two limits (see e.g. figure 4). The results are
of relevance for the analogous theoretical studies of disordered conductors as well as for the
experiments using clean metal junctions with different effective electron mass throughout the
circuit.
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